portion of the boron s orbital is required in the cage bonding so that the orbital presented to the chlorine atom is predominantly of p character, and this allows a longer bond length than is afforded by sp^3 or sp^2 hybridization. The larger coupling constant is then due either to slightly less ionic character of the bond or a shift in hybridization of chlorine orbitals toward inclusion of less s character. That the boron s orbitals are usurped by the cage structure may be more pronounced in a chlorocarborane than in the parent carborane, as indicated by the shortened B–B bonds adjacent to the chlorine atom in the present case.

Acknowledgment.—We wish to thank J. Spielman and T. Onak for lending us the sample of 2-chloro-1,6dicarbahexaborane(6). We are grateful for the unfunded computer time supplied by the USC Computer Center. The support of the United States Air Force Office of Scientific Research under Grant AFOSR 849-67 is gratefully acknowledged.

Contribution from the Department of Chemistry and Materials Research Center, Northwestern University, Evanston, Illinois 60201

Nature of the Donor-Acceptor Interaction in Boron Trihalide Complexes. Vibrational Spectra and Vibrational Analysis of Acetonitrile-Boron Trichloride and Acetonitrile-Boron Tribromide

BY D. F. SHRIVER*1 AND BASIL SWANSON²

Received October 20, 1970

Infrared and Raman spectral data in the 4000–70-cm⁻¹ region are reported for polycrystalline samples of $Cl_3B \cdot NCCH_3$ and $Br_3B \cdot NCCH_3$ at -196° . These data include five isotope species of each compound. In addition, Raman polarization data are presented for $Cl_3B \cdot NCCH_3$ in nitromethane solution. Normal-coordinate vibrational analyses based on constrained valence force fields show that the B–N stretching force constants follow the order $F_3B \cdot NCCH_3 < Cl_3B \cdot NCCH_3 \sim$ $Br_3B \cdot NCCH_3$ (k(BN) = 2.5, 3.4, and 3.5 mdyn/Å, respectively). As with previous structural data, the force constants indicate a significantly stronger donor–acceptor bond for BCl₃ than for BF₈. These results require the abandonment of reorganization energy differences as the sole explanation of relative boron halide acidities. Alternate descriptions of the bonding were explored by CNDO/2 molecular orbital calculations on BF₈ and BCl₃. These calculations indicate that BCl₃ may have a higher electron affinity than BF₈.

Introduction

It is well known that the acidity of the boron halides, as judged by either free energy or heat of reaction, follows the order $BF_3 < BCl_3 \leq BBr_3$.³ This trend is the opposite of that expected from electronegativity arguments, and the explanation generally offered is that the energy necessary to reorganize the planar boron halide to the pyramidal form is more important than inductive effects. Estimates of this reorganization energy along with the thermochemical data on complex formation lead to the conclusion that the boron-donor bond strength follows the order expected from electronegativities: $BF_3 > BCl_3 > BBr_3$.⁴

In contrast to the estimates of the nitrogen-boron donor-acceptor energies,⁴ it was recently shown that BCl_3 forms a shorter and presumably stronger B-N bond with acetonitrile than does $BF_{3.5}$ The present work was designed to check further the degree of B-N interaction by means of B-N force constant determinations.

Experimental Section

Infrared Spectra.—Calibrations of the Beckman IR-9 and (1) Alfred P. Sloan Fellow, 1967–1969.

(1) Alled 1. Sloan Penow, 1967–
 (2) NDEA Fellow, 1968–1970.

(3) D. R. Martin and J. M. Canon, "Friedel-Crafts and Related Reactions," Vol. 1, G. A. Olah, Ed., Interscience, New York, N. Y., 1963, p 399;
T. D. Coyle and F. G. A. Stone, "Progress in Boron Chemistry," Vol. 1,
H. Steinberg and A. L. McCloskey, Ed., Macmillan, New York, N. Y., 1964, p 83.

(4) C. T. Mortimer, "Reaction Heats and Bond Strengths," Pergamon Press, New York, N. Y., 1962, p 111 ff.

(5) B. Swanson, D. F. Shriver, and J. A. Ibers, Inorg. Chem., 8, 2182 (1969).

IR-11 instruments employed in this work were checked with water and CO_2 bands and found to be within $\pm 1.0 \text{ cm}^{-1}$. Spectra were collected at low temperatures⁶ on samples which were annealed at *ca*. 0° or lower. The annealing was not performed at room temperature in order to avoid reaction with the KBr window material used for infrared-cell windows in the 4000-400-cm⁻¹ region.

Raman Spectra.—The Raman data were collected with Spex 1400-1I double monochromator and photon rate detection circuitry.⁷ Data for $Cl_3B \cdot NCCH_3$ were obtained with 6328-Å He-Ne laser excitation (Spectra Physics Model 125); while for Br₃B · NCCH₃ a more powerful Ar ion laser (Coherent Radiation Model 52) was employed at 5145 Å. The annealed solids were observed in a simple low-temperature cell.⁸ Solutions of Cl_3 -BNCCH₃ were contained in an evacuable cell.⁶ and depolarization ratios were calculated from peak areas.

In an attempt to obtain polarization data for $Br_3B \cdot NCCH_3$, the Raman spectrum was run for acetonitrile solutions. However, peak positions did not correspond to those of the pure solid, and the background gradually increased as the solution developed a yellow color. Apparently BBr_3 undergoes a drastic reaction with liquid acetonitrile; however we could find no evidence for the presence of BBr_4^- in this solution.⁹

⁽⁶⁾ B. Swanson and D. F. Shriver, *ibid.*, 9, 1406 (1970).

⁽⁷⁾ I. Wharf and D. F. Shriver, *ibid.*, 8, 914 (1969).

⁽⁸⁾ D. F. Shriver, B. Swanson, and N. Nelson, Appl. Spectrosc., 23, 274 (1969).

⁽⁹⁾ On the basis of infrared data C. D. Schmulbach and I. Y. Ahmed, Inorg. Chem., **8**, 1414 (1969), suggested that BBr₄⁻ is present in dilute solutions of BBr₃ in acetonitrile. From the present results it appears that appreciable quantities of BBr₄⁻ are not present in our freshly prepared solutions. (However there is no doubt that some reaction, other than simple adduct formation, takes place when BBr₃ is dissolved in aetonitrile.) Several possible explanations of the disparity are as follows: (1) the sampling technique for Raman work is less susceptible to contamination from the atmosphere and does not involve contact with alkali halide window material; (2) the BBr₃ concentrations were different in the two studies; (3) our observations were confined to freshly prepared solutions because fluorescence developed upon aging.

Assignments

For both adducts the assignments were based primarily on C_{3v} molecular symmetry, for which 7 A₁ and 8 E modes are both infrared and Raman active, while 1 A₂ mode is inactive in both spectra. The designation of fundamentals is given in Table I. Certain features

TABLE I
NUMBERING AND APPROXIMATE DESCRIPTION OF THE FUNDAMENTAL VIBRATIONS FOR Cl ₃ B·NCCH ₃ AND
$Br_{3}B \cdot NCCH_{3}$ (C_{3v} Symmetry)

- A1	class (symmet	(\mathbf{ric}) —	E	E class (asymmetric)											
ν_1	CH_3	str	v 9	CH3	str										
ν_2	C≡N	str	ν_{10}	CH3	def										
ν_3	CH3	def	ν_{11}	CH₃	rock										
ν_4	C—C	str	ν_{12}	BX_3	str										
ν_5	B—N	str	ν_{13}	NCC	def										
v 6	BX_3	str	v 14	BX3	rock										
V7	BX_3	def	ν_{15}	BX_3	def										
			ν_{16}	BNC	def										
<u> </u>	A ₂ class														
ν_8	torsion														

of the spectra are explained in terms of selection rules for the solid state. Both adducts crystallize in the centrosymmetric space group $Pnma.^{5,10}$ There are between free molecule and factor group are as follows: $A_1 \rightarrow A_g$, B_{3g} , B_{1u} , and B_{2u} ; $E \rightarrow A_g$, B_{1g} , B_{2g} , B_{3g} , A_u , B_{1u} , B_{2u} , and B_{3u} . Thus, A_1 modes of the isolated molecule yield two Raman-active modes and two different infrared-active modes, while E symmetry species yield three infrared-active and four Raman-active modes for the crystal.

Unless stated otherwise, all data were collected on solid normal isotopic molecules at ca. -196° . Special isotopic substitution is designated by listing only the enriched isotope(s), e.g., ${}^{10}BD = X_3{}^{10}B \cdot NCCD_3$.

Cl₃B·NCCH₃ and Br₃B·NCCH₃. 4000-800 Cm⁻¹.— In this region both Cl₃B·NCCH₃ and Br₃B·NCCH₃ exhibit fundamentals (Tables II–V) primarily associated with the acetonitrile portion of the molecule which is documented elsewhere.⁶ Assignments for observed infrared and Raman frequencies are presented in Tables II–V and display spectra are given in Figures 1–4. Infrared spectra for the 2300–2400-cm⁻¹ region contain the intense C=N stretching frequency, ν_2 , as well as a strong band attributed to $\nu_3 + \nu_4$ (CH₃ deformation + C—C stretch). As with other complexes of acetonitrile this combination band is rendered intense by Fermi resonance with ν_2 .^{6,11} For Cl₃B·NCCH₃ the

Figure 1.—Infrared spectra of $Cl_3B \cdot NCCH_3$ and $Cl_3B \cdot NCCD_3$ (cm⁻¹). The upper graph is the spectrum of $Cl_3B \cdot NCCH_3$ and the lower graph is the spectrum of $Cl_3B \cdot NCCD_3$ in all regions. The region below 450 cm⁻¹ was scanned with the Beckman IR-11, and both spectra were taken using annealed samples at $ca. -196^\circ$.

four molecules of the chloride adduct in the unit cell at sites of C_s symmetry⁵ and presumably the same situation exists for the isomorphous bromide. The correlation table between free molecule (C_{3v}) , site symmetry (C_s) , and factor group symmetry (D_{2h}) has been given elsewhere.⁶ The important correlations

(10) S. Geller and O. N. Salmon, Acta Crystallogr., 4, 379 (1951); J. L. Hoard, T. B. Owen, A. Buzzell, and O. N. Salmon, *ibid.*, 3, 130 (1950).

combination band $\nu_3 + \nu_4$ occurs at 2353 cm⁻¹, which is somewhat lower than ν_2 . By contrast, the combination band is slightly higher in the case of Br₃-N·CCH₃, *viz.*, 2377 cm⁻¹. If the usual corrections for Fermi resonance are applied,¹² the corrected position

(11) J. C. Evans and G. Y.-S. Lo, Spectrochim. Acta, 21, 1033 (1965).
(12) J. Overend in "Infrared-Red Spectroscopy and Molecular Structure," M. Davies, Ed., American Elsevier, New York, N. Y., Chapter 10.

	Observed	INFRARED FREQUEN	CIES FOR Cl ₃ B·NCCH ₃	AT $Ca196^{\circ} (\text{cm}^{-1})$)a
11B ^b	11 B D ^b	10B15N	10B	10BD	Assignments
216 m	213 m	215 mw	216 m	213 m)
222 m	220 s	221 m	221 m	220 m	$\rangle \nu_{15}$
259 m	252 s	257 vs	259 s	253 s	{
266 vvs	260 vs	264 vs	266 vvs	260 vs	ν_{14}
287 w	292 m	310 vw		293 mw) 27
411 m	407 m	412 s	411 s	407 m	Ve
417 m	412 m	416 m	417 s. sh	412 m	2 115
$\sim 445 \text{ vw}$	430 vw		445 w	430 w	2 - 13 V 12
110 110	$\sim 450 \text{ yw}$			$\sim 452 \text{ vw}$	2.11.1
	~ 620 w b			$\sim 615 \text{ w h}$	10 + 10
672 w	660 m	669 mw	671 mw	661 mw	$v_{c} + v_{1}$
012 11				694)	P6 P14
				699 m	$\nu_6 + \nu_7$
			713 sh	000)	>
	712 s	717 s	721 m	•••	*** ± ***
719 775	698 vs	738 s	742 vs	714 vs	
110 45	727 \$	100 5	759 s	730 vs	ν ₅
	121 3	752 s	100 3	743 m	$\nu_7 + \nu_{13}$
746 wwe	750 yys b	102 0		, 10 111	
782 6	778 vs	775 vvs	777 www. b	774 www. h	ν_{12}
102 3	845 s	110 115	111 443, 5	845 e	$\mathcal{V}_{12}(\mathcal{D})$
856 w	610 3	848 m	857 m	010 3	$\mathcal{V}_{11}(\mathbf{D})$
860 w		040 111	860 m	• • •	$\nu_{6} + \nu_{13}$
800 w	862 m	870 m	803 m	862 m	2
092 m	002 m	030	893 m	015 m	2 µ ₁₃
	908 w	930 W	•••	033) 910 M	$\nu_5 + \nu_{15}$
	920 VS	•••	• • •	935 027 VS	$\mathcal{V}_4(D)$
•••	045 w sh		•••	901)	$p_5 + p_{15}$
075	940 w, sn	• • •		064 mm	$\nu_5 + \nu_{14}$
$\sim 975 \text{ VW}$	904 mw		•••	904 mw	1
969 W	- 1015	•••		~982 W	r (T))
1010 -	\sim 1015 vw	1002 ***	1018 -	1010 W	$\nu_{10}(D)$
1010 s	•••	1005 vs	1018 8		$\nu_4(\mathbf{H})$
1024 m		1025 S	1028 m	1040	$\nu_{11}(\mathbf{H})$
• • •	•••		•••	1040 W	$\nu_{12} + \nu_{14}$
	$\sim 1055 \text{ vw}$			1070 vw	$v_{13} + v_{11}$ or
					$\nu_7 + \nu_{12}$
1090 m	1091 mw	1090 w		\sim 1092 vvw	$\int \nu_{11} + \nu_{16}(\mathbf{H})$
	1105			1100	$(\nu_{12} + \nu_{16}(D))$
	1105 w	1107	1107	1106 w	$\nu_3(\mathbf{D})$
1127 mw	1127 mw	1125 W	1127 mw	1127 m	$\nu_{3} + \nu_{6}$
• • •	\sim 1147 w, sh	• • •	\sim 1147 vw		P
• • •		• • •		1174 w	<u>_</u> }
• • •	1198 mw	• • •	\sim 1190 w	1199 vw, sh	$\nu_{12} + \nu_{12}$
• • •	1070)			1209 w	
	1270				$\nu_{10} + \nu_{14}$
	1274) "			•••	10 1 114
1357 s	• • •	1356 s	1357 ms		$\nu_{2}(\mathbf{H})$
1364 s	• • •	1363 s	1364),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1403 m		\sim 1390 m, b	1404 mw		$\nu_{10}(H)$
• • •	\sim 1380 vw	• • •		\sim 1420 vvw	$2 \nu_{\tilde{o}}$
	• • •	• • •	$\sim \! 1465 \; \mathrm{sh}$?
• • •	\sim 1477 vvw	\sim 1500 m	\sim 1530 vw	$\sim 1535 \text{ w}$	$2\nu_{12}$
~ 2042 mm	~ 1942 yyy	2045 w	2042 w	$\sim 1045 \text{ ww}$	$\int v_{10} + v_{11}(D)$
2012 VW	· • 1042 • • •	2010 W	2042 W	1010 VW	$(2\nu_4(\mathbf{H}))$
	2110 s			2110 s	$\nu_1(D)$
	2179 vvw			2180 vw	?
	2214 w			2216 w	$2\nu_{\delta}(D)$
	2252 m			2253 ms	$\nu_{\theta}(\mathbf{D})$
\sim 2255 vvw		2285 m		• • •	$2\nu_{11} + \nu_{15}$
0210 m	2210 wm		2214 w	9310 wm	$\int v_3 + v_4 + v_7(D)$ or
2012 W	2019 WIII		2014 W	2019 WIII	$2\nu_{11} + \nu_{14}$
	2338 11	2244 ch	~2330	2330 m	$\int 2\nu_3 + \nu_{16}(D)$
• • •	2008 W	2044 20	~2330 VVW	2009 W	$(2\nu_4 + \nu_7(\mathbf{H}))$
2353 s	• • •	2360 s	2356 s		$\nu_3 + \nu_4$
2380 vs	2371 vvs	2329 vs	2381 s	2372 vs	ν_2
\sim 2418 vvw					?
	$\sim 2625 \text{ vw}$			\sim 2620 vvw	$\nu_2 + \nu_6$
	$\sim 2780 \text{ vvw}$			\sim 2775 vvw	$\nu_1 + \nu_5$
2931 s		2926 s	2931 m		$\nu_1(\mathbf{H})$
3004 m		3004 ms	3 003 m		$\nu_9(\mathrm{H})$
	3058 vw			3075 vvw	$\nu_2 + \nu_4$
	3090 vvw			3093 vw	$\nu_2 + \nu_5$
			\sim 3110 vvw		$\nu_2 + 2\nu_6$
	3190 vw			3192 vvw	$\nu_1 + \nu_3$
	3478 w			3479 w	$\nu_2 + \nu_3$

TABLE II

 a These data represent spectra of annealed polycrystalline samples at *ca*. -196° . b Boron-11 indicates the normal isotopic distribution.

	Observei	RAMAN FREQUEN	ICIES FOR Cl3B.NO	ССН3 АТ Са19	6° (CM ⁻¹) ^a	
11Bp	11 B ^{b,c}	$^{11}\mathrm{BD}^{b}$	¹⁰ B ¹⁵ N	10 B	10 B D	Assignments
78 s		78 m		79 s	79 s	ν_{16}
126 s		113 m	122 mw	123 m	119 ms	?
220 m	216(0.8)	215 mw	221 ms	222 m	216 ms)
					222 m, sh	ν_{15}
256 w		245 w	246 w	256 mw	252 w. sh	ſ
263 m	258(0.8)	257 w	264 mw	264 mw	260 m	ν_{14}
309 m	308(0.73)	292 m	307 m	310 m	292 s	יע
000		404 w			402 vw	2
		-01 //			406 w	?
416 vs	410(0.04)	409 vs	415 vs	415 vs	411 vs	Ve
448 m	450 (0.8)	431 m	441 m	447 m	431 m	70
706 m	699(ca, 0, 0)	684 w	724 mw	728 w	706 mw	P 13
735 m]	000 (00: 0:0)	732 w	765 w	763 vw	762 w)
749 w	758(0.78)	739 vw	772 w	772 vw	771 w	$\rangle \nu_{12}$
142 W J		100 11	785 w	787 yw	785 w	, ,
• • •		023 m	100 1	101 11	034 s	(D)
•••	•••	023	• • •	•••	020 m ch	$\nu_4(D)$
• • •	1020 (0. 8)	900 V W		• • •	559 W, SH	$\nu_5 - \nu_{15}$
1010	1032(ta.0.8)	• • •	000	1015	•••	$\nu_{11}(\Pi)$
1010 mw	998 (0.06)	1104	1959 IIIW	1010 W	1107	$\nu_4(\Pi)$
1353 m		1104 W	1305 ms	1304 m	1107 mw	$\nu_{3}(\mathbf{H})$
•••	• • •	2110 vs	• • •	• • •	2110 vs	$\nu_1(D)$
• • •	• • •	2214 vw	• • •	• • •	2218 mw	$2\nu_{3}(D)$
		2252 mw			2253 mw	$\nu_{9}(\mathbf{D})$
2351 ms	2346(0.16)			2356 w		$\nu_3 + \nu_4(H)$
2379 ms	2371(0.15)	2368 m	2326 vs	2381 w	2371 s	ν_2
2929 s	•••	• • •	2930 vvs	2930 s	• • •	$\nu_1(H)$
				-		

TABLE III

^a Observed Raman frequencies from annealed solid samples at -196°. ^b Boron-11 represents the normal isotopic distribution. ^o Spectrum of nitromethane solution. Depolarization ratios are in parentheses.

Figure 2.—Raman spectra of $Cl_3B \cdot NCCH_3$ and $Cl_3B \cdot NCCD_3$ (cm⁻¹). The upper graph is the spectrum of $Cl_3B \cdot NCCH_3$ and the lower graph is the spectrum of $Cl_3B \cdot NCCD_3$ in all regions. Both spectra were taken using the He–Ne 6328-Å exciting line and annealed samples at *ca.* -196°.

of ν_2 agrees well with that found for the deuterated molecules, where Fermi resonance is not a problem.

Cl₃B · NCCH₃. 800-400 Cm⁻¹.—This region is dominated in the infrared spectrum by a very strong broad band which is centered at 746 cm⁻¹ for the normal isotopic molecule (Figure 1) and is assigned to the asymmetric BCl₃ stretch, ν_{12} . The ¹⁰B counterpart is observed around 780 cm⁻¹. In the Raman spectrum (Figure 2) this mode appears as a weak doublet at 742 and 735 cm⁻¹ for the normal molecule; while in solution it appears as a single depolarized line at 758 cm⁻¹. The lack of correspondence between infrared and Raman frequencies and splitting in the Raman spectrum of the solid are understandable from the selection rules for the factor group.

Three other fundamentals in this region are $\nu_5(A_1, B-N \text{ stretch})$, $\nu_6(A_1, BCl_3 \text{ stretch})$, and $\nu_{13}(E, NCC \text{ deformation})$. The two symmetric modes are assigned to polarized bands at 699 and 410 cm⁻¹ in the solution spectrum (Table III). Comparisons with $F_3B \cdot NCCH_3^6$ and $Br_3B \cdot NCCH_3$ (see below) indicate that the higher frequency mode around 700 cm⁻¹ is the B-N stretch, ν_5 . These symmetric modes are found at 719 cm⁻¹ (ν_5) and 411 cm⁻¹ (ν_6) in the infrared spectrum of the normal isotopic solid. The assignment of ν_5 is complicated by the occurrence of other strong peaks in the infrared spectrum around 700 cm⁻¹; however, isotopic shifts substantiate the current choice. The disparity between infrared and Raman frequencies for ν_{12} is attributed to factor group coupling.

The NCC deformation, ν_{13} , is assigned to very weak infrared bands at 445 and 430 cm⁻¹ for the normal and D isotopic molecules, respectively. The magnitude of this isotopic shift agrees with that found for F₃B. NCCH₃⁶ and free acetonitrile.¹³ As expected, this band is depolarized in the Raman spectrum of the solution.

⁽¹³⁾ F. W. Parker, A. H. Nelson, and W. H. Fletcher, J. Mol. Spectrosc., 1, 107 (1957); W. H. Fletcher and C. S. Shoup, *ibid.*, 10, 300 (1963).

	Observed Inf	FRARED FREQUENCIES	S FOR Br ₈ B·NCCH ₃	At $Ca196^{\circ} (cm^{-1})^{a}$	
${}^{11}B^{b}$	11 B D ^b	10B15N	10 B	10 B D	Assignments
	106 vvw			112 vw, sh	
128 s	121 m	129 m	129 m	1 20 m	<u>}</u> ?
143 m	143 m	143 m	142 m	142 m	¥15
			173 vw	172 vw	$v_{14} - v_{16}$
191 s	189 s	190 s	191 s	188 s	P 14 P 10
266 vvw	250 w			249 w	P 1
290 vvs	283 vs	288 vs	290 vs	283 vs	P14 Vo
429 vw	414 w. h			~ 415 w b	20
120 11	464 w b			$\sim 460 \text{ w}$ b	×13
555 w	101 W, D	550 WWW	555 w	~532 yy	$\nu_6 + \nu_7$
614 w		000 ***	610 m	~ 622 VVW	$2\nu_6$
014 W		652 m	654 mg	~022 VVW	$\nu_7 + \nu_{13}$
650	659	005 111	004 1115	032 m	$\nu_6 + 2\nu_7$
009 VVS	008 vvs	600	000	600	
600	690	089 VVS	080 VVS	083 VVS	ν_{12}
090 VS	080 Vs	099 VVS	093 VVS		J
(15 s	692 s	713 VS	719 vs	704 vvs	¥5
	• • •	728 sh			?
733 ms		738 s	737 s	<u></u>	$\nu_6 + \nu_{13}$
	762 w	767 w	768 mw	765 mw	$2\nu_6 + \nu_7$
855 m	818 mw	843 m	858 m	819 mw	$2\nu_{13}$
	837 ms			838 s	$\nu_{11}(\mathbf{D})$
•••				925 ?	l i
$\sim 935 \text{ vvw}$				936 ?	$\int \nu_6 + \nu_{12}$
	935 s			944 vs	$v_4(D)$
	947 w				$\nu_5 + \nu_{14}$
992 w	964 w		968 w	971 w	
				978 w	$\nu_6 + \nu_5$
	1007 mw			1009 m	$\nu_{10}(\mathbf{D})$
1020 vs		1010 ms	1018 vs		
1022 vs					$\langle \nu_4(\mathbf{H}) \rangle$
1032 s		1018 sh	1032 s		(\mathbf{H})
		1023 sh			>
				1042 vw	$\frac{1}{2}$
				~ 1072 vw	$\nu_{11} + \nu_{14}$
1125 vvw			1196 w	1090 ww	$\nu_{12} + \nu_{13}$
1195 yyw			1210 w	~ 1108	20 1 213
1100 111	•••		1210 ₩	1948 197	· ·
1348	•••	1945 ch		1240 • •	$\nu_{11} + \nu_{13}$
1353 c	• • •	1248 c	1248 c	•••	
1360 m		1250 ah	1252 m	•••	(23(11)
1302 m		1300 me	1201	• • •	(H)
1446 m	• • •	1420	1091 w	•••	
1475 sh	•••	1409 W	1440 W	• • •	$2\nu_6 \text{ or } \nu_4 + \nu_{13}$
2027		1000 W	0002		r
2027 VW	• • •	2020 VW	202 3 VV W	•••	224
2030 VW	0106		• • •	0100	$\nu_4 + \nu_{11}$
•••	2106 mw	•••	•••	2108 m	$\nu_1(\mathbf{D})$
•••	2240 mw	0070	•••	2248 mw	$\nu_9(\mathbf{D})$
	• • •	2272 VW			?
2305 W	• • •	• • •	2306 vvw	2311 vw	?
2321 VW			0040	2330 yw	$\nu_3 + \nu_5 + \nu_6$
2350 s	2362 s	2322 vs	2348 vs	2362 vs	v ₂
2377 s	• • •	2353 mw	2360 s		$\gamma_{2} + \gamma_{4}$
• • •		• • •	2380 s	• • •	
	2929 vw			• • •	$\nu_5 + \nu_9$
2922 m		2922 m	2922 s		$\nu_1(\mathbf{H})$
2997 m		2996 mw	2996 ms		$\nu_{9}(\mathbf{H})$
	304 0 vw			3058 vv w	$\nu_1 + \nu_4$
				3 075 vvw	$\nu_2 + \nu_3$
				\sim 3250 vvw	$\nu_2 + \nu_4$
				3474 vvw	$\nu_2 + \nu_3$

TABLE IV

^a Spectra are reported for annealed samples. ^b Boron-11 indicates the normal isotopic distribution.

Possible assignments for overtone and combination bands are given in Table II.

~

400–50 Cm⁻¹.—One symmetric mode, ν_7 (A₁, BCl₃ deformation), is expected in this region. While the observed depolarization ratios (Table III) do not allow an unequivocal assignment, the 308-cm⁻¹ band exhibits the lowest depolarization ratio (0.73). Comparisons with Clippard's definitive assignments in this region¹⁴ also indicate that the infrared and Raman bands around 300 cm⁻¹ should be assigned to ν_7 .

(14) P. D. H. Clippard, Ph.D. Thesis, University of Michigan, 1969.

The two remaining depolarized bands at ca. 217 and ca. 260 cm⁻¹ can be assigned to $\nu_{14}(E, BCl_3 \operatorname{rock})$ and $\nu_{15}(E, BCl_3 \operatorname{deformation})$, respectively. The normalcoordinate treatment (see below) supports the general correctness of this assignment but it also indicates that these modes are highly mixed. The splitting in ν_{14} and ν_{15} which occurs upon going from solution to the solid state is attributed to factor group effects in the solid.

As with $F_3B \cdot NCCH_3$,⁶ the BNC deformation, ν_{16} , presents difficulties in assignment. Two bands which might be assigned to this mode are found around 120

Figure 3.—Infrared spectra of $Br_3^{10}B \cdot NCCH_3$ and $Br_3^{10}B \cdot NCCD_3$ (cm⁻¹). The upper graph is the spectrum of $Br_3^{10}B \cdot NCCH_3$ and the lower graph is the spectrum of $Br_3^{10}B \cdot NCCD_3$ in all regions. The region below 450 cm⁻¹ was scanned with the Beckman IR-11, and both spectra were taken using annealed samples at *ca*. -196°.

 TABLE V

 OBSERVED RAMAN FREQUENCIES FOR

 $Br_3B \cdot NCCH_3$ AT $ca. -196^\circ$ $(CM^{-1})^o$

 UDDb

	Br3B ·	NUCH ₈ AT a	$ca 190^{\circ}$	(CM_1) ^a	
11Bp	11BD ^b	10B18N	10B	¹⁰ BD A	ssignments
108 w, b	106 mw	108 mw	112 mw	115 m	1.
	116 w	127 vw		120 m	ſ
147 m	145 m	147 m	146 ms	144 m	¥15
182 ms	180 ms	183 s	182 s	178 mw	l.i.
187 m	186 m	188 mw	188 m	190 s	5 ⁴⁴
268 ms	251 m	267 m	266 m	248 m	P14
289 vvs	283 vs	289 vs	288 vs	281 vs	¥6
403 m		397 m	• • •	· · · ·	2
426 m	408 mw	421 m	426 w	407 m	¥13
642 ms	640 m		· · · ·	654 vw)
653 ms	652 m	670 m	671 m	669 mw	×12
690 w	692 vw, b	682 m	680 m	678 m	j.
700 ms	675 m	720 m	722 m	693 m	¥5
	934 s			943 s	¥4(D)
	945 mw	•••			V6 🕂 V12
• • •	961 vw				V5 + V8
1019 vs	· · ·	1004 m	1025 mw		24(H)
1030 mw	•••	1018 m		•••	ν11(H)
• • •	1014 w	•••		1013 vw	$\nu_{10}(\mathbf{D})$
	1106 w		•••	1104 w	¥8(D)
1350 s		1352 vs	1350 mw	• • •	v8(H)
• • •		1402 w	• • •		P10(H)
• • •	2102 vs		•••	2106 m	¥1(D)
• • •	2213 vvw		• • •	· • • •	2 23
	2241 m	.111		2241 w	ν9(D)
2349 ms	2362 vs	2318 vvs	2348 ms	2361 s	V2
2377 w		2361 w	2379 m	• • •	>v3 + v4
0014	• • •	2376 vw		•••	
2914 VS	• • •	2315 vvs	2914 s		ν1(H)
2984 W		2987 mw	2985 W	• • •	¥9(H)

 a,b See footnotes a and b, Table IV.

and 80 cm⁻¹. The lower frequency was finally chosen as ν_{16} for two reasons: (1) a satisfactory fit to the frequencies could not be obtained when the 120-cm⁻¹ band was employed in the normal-coordinate treatment; (2) the absence of a frequency shift in the 120-cm⁻¹ band when Cl is substituted for F. The low frequency

Figure 4.—Raman spectrum of $Br_s^{10}B \cdot NCCH_s$ (cm⁻¹). The spectrum was taken using the 5145-Å Ar ion exciting line and an annealed sample at *ca*. -196°

assigned to this mode is reasonable in view of the weakness of the B-N bond. The ambiguity for this lowfrequency assignment does not affect the symmetry

Figure 5.—Calculated energies for the lowest unoccupied molecular orbital E(LUMO) and the binding energies E(binding)vs. the degree of distortion. As illustrated $\theta = 90^\circ$ corresponds to planar BX₃.

force constants belonging to the A_1 species and it has little or no influence on the valence force constants of primary interest (F_{BN} , F_{BCl} , and F_{CN}). Therefore, the principal conclusions of this work will not be affected if future experimental evidence leads to reassignment of the low-frequency region.

 $Br_3B \cdot NCCH_3$. 800-400 Cm⁻¹.—The dominant feature in the infrared spectrum for the normal isotopic molecule is a very strong absorption centered around 659 cm⁻¹ which is assigned to the asymmetric BBr₃ stretch, ν_{12} (Figure 3). This intense absorption along with the occurrence of several strong satellite bands complicates the assignment of the B-N stretch, ν_5 , which is expected around 700 cm^{-1} . Fortunately, the Raman spectrum in this region (Figure 4) is much less complex than the infrared. The ¹⁰B molecule exhibits a Raman line at 722 cm⁻¹ which shifts to 700 cm⁻¹ in the normal isotopic molecule and to 675 cm^{-1} in the D molecule. This pattern of isotopic shifts closely resembles that found for ν_5 in Cl₃B·NCCH₃ and the *ca*. 700-cm⁻¹ band is assigned accordingly. Two other prominent features occur at 680 and 671 cm⁻¹ in the Raman spectrum of the 10B molecule. These are assigned to two components of the asymmetric BBr3 stretch, ν_{12} , which has been split by the low site symmetry of the molecule. The influence of the crystalline environment is also evident in the constant disparity between infrared and Raman bands for both ν_5 and ν_{12} . Similar effects are evident in the spectra of Cl₃B. NCCH₃.

The remaining fundamental expected in this region is the NCC deformation, ν_{13} , which is assigned to a 429cm⁻¹ infrared band and 426-cm⁻¹ Raman band in the spectra of the normal isotopic molecule. Isotopic shifts and the position of this band agree with those found for $F_{\vartheta}B \cdot NCCH_{\vartheta}^{\delta}$ and $Cl_{\vartheta}B \cdot NCCH_{\vartheta}$. Remaining features in this region are assigned to overtones or combination bands.

400–50 Cm⁻¹.—The symmetric BBr₃ stretch, ν_6 , which is expected in this region may be assigned to the very strong infrared and Raman bands around 285 cm⁻¹ (Figures 3 and 4). As with the corresponding vibration of Cl₃B·NCCH₃, this mode is not significantly affected by isotopic substitution. Since polarization data on solutions were unobtainable, the symmetric BBr₃ deformation, ν_7 , cannot be assigned with certainty. However, a reasonable assignment is *ca*. 190 cm⁻¹ since the Raman spectra contain a sharp and intense doublet at this frequency. This agrees with the position of the corresponding mode for Br₃B·N-(CH₃)₃.¹⁴ The band at *ca*. 145 cm⁻¹ is attributed to the BBr₃ asymmetric deformation mode, ν_{15} , in agreement with the corresponding mode of Br₃BN(CH₃)₃.¹⁴

A band at ca. 250 cm⁻¹ was originally considered to be too high to be any of the remaining fundamentals. Therefore, the BBr₃ rock, ν_{14} , was initially assigned to the band at 125 cm⁻¹. However, the normal-coordinate treatment using this assignment was unsatisfactory. The frequency fit and PED are reasonable when v_{14} is assigned to the 250-cm⁻¹ band. The high frequency for this normal mode appears to arise from extensive contributions from symmetry coordinates other than the BBr₃ rock (see below). Alternatively, the lowfrequency peak of the doublet at ca. 190 cm⁻¹ may be ν_{14} , the peak at ca. 143 cm⁻¹ may be ν_{15} , and either or both of the peaks at ca. 125 and ca. 110 cm⁻¹ may be ν_{16} . Since all of these frequencies fall in the E class, a change in assignments would have no effect on calculating the B-N stretching force constants and little or no effect on the other force constants of primary interest.

Calculation of Force Constants

Symmetry force constants were calculated using Schachtschneider's iterative least-squares program and associated programs.¹⁵ The individual eigenvalues were weighted as $w_i = 1/\lambda_i$. Both molecules were treated essentially the same and are discussed together.

The large factor group splitting in both adducts necessitated averaging of observed peak positions between infrared and Raman spectra. In addition, those fundamentals which were split in either the Raman or the infrared spectra were first averaged. The value for ν_2 of the hydrogen-containing isotopic molecules were included in the refinement after correction for Fermi resonance.

Molecular parameters used for the calculation of the G-matrix elements were obtained from two sources. The bond lengths and angles of the methyl portion of the molecule were obtained from Costain.¹⁶ For the BCl₃ adduct the remaining bond parameters were obtained from the structure determination⁵ after the symmetry-related bond lengths and angles had been averaged. The B—N, C=N, and C—C bond lengths for the BBr₃ adduct were assumed to be the same as those found for the BCl₃ adduct. The B—Br bond length

(16) C. C. Costain, J. Chem. Phys., 29, 864 (1958)

⁽¹⁵⁾ R. G. Snyder and J. H. Schachtschneider, Spectrochim. Acta, 19, 85 (1963); programs GMAT and FPERT (locally modified) were employed: J. H. Schachtschneider, "Vibrational Analysis of Polyatomic Molecules V and VI," Reports 231-64 and 57-65, Shell Development Co., Emeryville, Calif., 1966; program COTRANS also was used: B. Swanson, Ph.D. Thesis, Northwestern University, June 1970.

was obtained by scaling the value found in Br₃B⁻N- $(CH_3)_3$ by the ratio of the B—Cl bond lengths in Cl_3B . NCCH₃ and Cl₃ $B \cdot N(CH_3)_3$. The BNCC backbone in both molecules was assumed to be linear, and the BBr₃ group was assumed to be tetrahedral. The bonding parameters and symmetry coordinates for both adducts are presented in Table VI.

TABLE VI

MOLECULAR PARAMETERS AND COORDINATES for $Cl_3B \cdot NCCH_3$ and $Br_3B \cdot NCCH_3$

			· · · ·		
	-Bond les	ngths, Å—		-Bond any	gles, deg ^a —
	X = Cl	X = Br		X = Cl	X = Br
r = C - H	1.157	1.157	$\alpha = HCH$	109.52	109.52
R = B - X	1.825	1.995	$\beta = CCH$	109.52	109.52
d = B - N	1.562	1.562	$\delta = XBX$	111.95	109.52
$D = C \equiv N$	1.122	1.122	$\gamma = NBX$	106.8	109.52
L = C - C	1.437	1.437	$\rho = BNC$	180.0	180.0
			$\epsilon = NCC$	180.0	180.0

Symmetry Coordinates^b

A₁ Class

 $S_1 = (1/\sqrt{3})(\Delta r_1 + \Delta r_2 + \Delta r_3)$

- $S_2 = \Delta D$ $S_3 = (1/\sqrt{n_1}) \left[m_1(\Delta \alpha_1 + \Delta \alpha_2 + \Delta \alpha_3) - (\Delta \beta_1 + \Delta \beta_2 + \Delta \beta_3) \right]$
- $S_4 = \Delta L$
- $S_5 = (1/\sqrt{3})(\Delta R_1 + \Delta R_2 + \Delta R_3)$ $S_6 = \Delta d$
- $S_7 = (1/\sqrt{n_2}) \left[m_2(\Delta \gamma_1 + \Delta \gamma_2 + \Delta \gamma_3) (\Delta \delta_1 + \Delta \delta_2 + \Delta \delta_3) \right]$

E Class

S9	-	$(1/\sqrt{2})(\Delta r_2 - \Delta r_3)$
S_{10}	-	$(1/\sqrt{2})(\Delta \alpha_2 - \Delta \alpha_3)$
S_{11}	=	$(1/\sqrt{2})(\Delta\beta_2 - \Delta\beta_3)$
S_{12}	=	$(1/\sqrt{2})(\Delta R_2 - \Delta R_3)$
S18	=	Δe
S14	=	$(1/\sqrt{2})(\Delta\gamma_2-\Delta\gamma_3)$
S15	=	$(1/\sqrt{2})(\Delta\delta_2 - \Delta\delta_3)$
S16	=	$\Delta \rho$

^a See ref 6 for the assumed molecular conformation. ^b $m_1 =$ $-\sqrt{3}\cos\beta/[\cos\alpha/2], n_1 = 3(m_1^2 + 1); m_2 = -\sqrt{3}\cos\gamma/[\cos\alpha/2]$ $\delta/2$], $n_2 = 3(m_2^2 + 1)$.

While the vibrational problem is not grossly underdetermined, the force constant matrix was constrained and only 14 A_1 and 17 E symmetry force constants were included in the calculations of frequencies. The remaining force constants were fixed at values of 0.0, since they involve interactions between symmetry coordinates which do not share a common bond (in the case of stretch-bend or bend-bend interactions) or a common atom (in the case of stretch-stretch interactions).

As described previously for $F_3B \cdot NCCH_{3,6}$ interaction constants for the acetonitrile portion of these complexes were transferred from the analysis of liquid acetonitrile. For the BX₃ portion of the molecule it was impossible to refine all of the significant interaction constants; therefore $F_{12,14}$, $F_{12,15}$, and $F_{14,15}$ were constrained to those values found for Cl₃CCCl₃ and Br₃CCBr₃ where the interaction constants have been accurately determined from gas-phase data.¹⁷ The value of $F_{13,16}$ was constrained to 0.05.¹⁸

Similarly, it was not possible to refine all of the offdiagonal A₁ symmetry force constants, so certain of these were constrained to values which allowed refinement to proceed (Tables VII and VIII). The influence

	TABLE VII
SYMMETRY FORCE	CONSTANTS FOR Cl ₃ B·NCCH ₃ ^a

		1	A ₁ Class		
F ₁₁	$4.93(2)^{b}$	F_{77}	1.67(3)	F_{34}	-0.38(2)
F_{22}	18.73(3)	F_{13}	-0.02(5)	F_{45}	0.0
F ₃₃	0.63(1)			F_{56}	0.78(10)
F44	5.06(11)	F_{24}	0.00	F_{57}	-0.7^{c}
F ₅₅	3.32(2)	F_{26}	-0.25	$F_{ m 67}$	0.68°
F ₆₆	3.40(16)				
		:	E Class		
F_{99}	4.70(3)	$F_{15,15}$	0.93(2)	$F_{12,14}$	0.60°
F _{10,10}	0.56(1)	$F_{16,16}$	0.26(9)	$F_{12,15}$	-0.62°
$F_{11,11}$	0.69(1)	$F_{9,10}$	0.26(4)	$F_{13,16}$	0.08(8)
$F_{12,12}$	3.25(4)	$F_{9,11}$	0.09°	$F_{14,15}$	0.330
F _{13,13}	0.42(7)	$F_{10,11}$	0.04°	$F_{14,16}$	-0.03(3)
F _{14,14}	0.73(18)	$F_{11,13}$	-0.09°		

^a The subscripts identify F_{kl} with symmetry coordinates k and l as defined in Table VI. Force constants F_{33} , F_{77} , $F_{10,10}$, $F_{11,11}$, $F_{13,13}$ $F_{14,14}, F_{15,15}, F_{16,16}, F_{10,11}, F_{14,15}, F_{14,16}, F_{11,13}$, and $F_{13,15}$ are in units of mdyn Å/(radian)² while constants of F_{13} , F_{34} , F_{57} , F_{67} , $F_{9,10}$, $F_{0,11}$, $F_{11,12}$, $F_{12,14}$, and $F_{12,15}$ are in units of mdyn/radian. The remainder are in units of mdyn/Å. ^b Least-squares standard deviations, given in parentheses, represent the deviation in the last decimal place(s) of a given force constant. • Force constant constrained.

TABLE VIII Symmetry Force Constants for Br₃B · NCCH₃^a

		A	1 Class		
F_{11}	$4.88(3)^{b}$	F_{77}	0.98(4)	F_{34}	-0.38(5)
F_{22}	18.56(6)	F_{13}	-0.02(10)	F_{45}	0.0
F_{33}	0.62(1)			F_{56}	0.24(16)
F_{44}	5.05(26)	F_{24}	0.0°	F_{57}	-0.76
F_{55}	2.95(19)	F_{26}	-0.25	F_{67}	0.33°
F_{66}	3.46(36)				
		-	E Class		
F_{99}	4.65(4)	$F_{15,15}$	1.01(2)	$F_{12,14}$	0.50°
$F_{10,10}$	0.56(1)	$F_{16,16}$	0.25°	$F_{12,15}$	-0.45°
$F_{11,11}$	0.70(1)	$F_{9,10}$	0.29(6)	$F_{13,16}$	0.15(7)
$F_{12,12}$	2.61(13)	$F_{9,11}$	0.09°	$F_{14,15}$	0.330
$F_{13,13}$	0.48(9)	$F_{10,11}$	0.04°	$F_{14,16}$	0.06(16)
$F_{14,14}$	0.67(43)	$F_{11,13}$	-0.09°		

^a See footnote a, Table VII. ^b See footnote b, Table VII. ^c Force constant constrained.

of these interaction constants on the diagonal force constants was carefully investigated for Cl₃B·NCCH₃. As expected, the B–N force constant is most sensitive to interaction terms involving the B-N coordinate. The constrained force constants F_{26} and F_{67} were varied over a considerable range without seriously affecting F_{66} .¹⁹ Significantly, the signs of these interaction terms as well as that of F_{56} are correctly reproduced by the usual hybrid orbital arguments.²⁰ While the influence of offdiagonal terms for Br₃B·NCCH₃ was studied in less detail, the same general conclusions apply for F_{66} .

The primary BNC deformation force constant for the BBr₃ adduct was constrained to the value obtained for the BCl₃ adduct, since the frequency for this fundamental was not observed and therefore could not be included in the refinement. The calculated value is *ca*. 70 cm⁻¹.

An attempt was made to find a force field which agreed with the ca. 125-cm⁻¹ assignment for v_{16} of the BCl₃ adduct and the ca. 110-cm⁻¹ assignment for this mode in the BBr₃ adduct. For both molecules the use of these alternate assignments for the BNC deformation

⁽¹⁷⁾ For the E symmetry block corresponding force constants from the Eig block of X3CCX5 were used: R. A. Carney, E. A. Piotrowsky, A. G. Meister, J. H. Brown, and F. F. Cleveland, J. Mol. Spectrosc., 7, 209 (1961).

⁽¹⁸⁾ The value for $F_{13,16}$ was obtained by changing this constant so to minimize approximately the correlation of the force constants and obtain a reasonable PED, while maintaining good agreement between the observed and calculated frequencies.

⁽¹⁹⁾ Values were explored for F_{26} ranging from 0.0 to -0.5 and for F_{67} from 0.0 to -1.0. For all of these calculations F_{66} fell into the range 3.38-3.42.

⁽²⁰⁾ M. I. Mills, Spectrochim. Acta, 19, 1586 (1963).

см ⁻¹)			22	$V_{33} - 12V_{34}$	$_{44} + 36V_{55}$	$_{44}$ + 69 V_{55} + 20 V_{66} + 65 V_{77} - 7 V_{22} - 20 V_{22} - 21 V_{22}	$V_{2.5} = 33 V_{57} = 21 V_{67}$	$\frac{1}{62}$ = $\frac{1}{69}V_{27}$ + $18V_{27}$			10.10 + 76V	$V_{26} = 12 V_{21} + 17 V_{22} = -34 V_{22}$	$-36V_{12,15} - 12V_{14,15}$	$1_{11,11} + 68V_{13,13} + 21V_{14,14} + 46V_{16,16}$	$-28V_{13,16}$	$r_{13,13} + 50 V_{14,14} + 11 V_{14,15}$	$12,12 \pm 42 V_{14},14 \pm 144 V_{15},15 \pm 11 V_{16},16$ - $10 V_{10} = 32 V_{10} = 63 V_{11}$	12^{-12} , 12^{-1} , 02^{-12} , 12^{-13} , 02^{-14} , 13^{-13} , 12^{-	$-29V_{12,14} - 16V_{12,15} - 34V_{14,16}$	the refinement. ^e Position corrected defined in Table VI. Contributions		(cm ⁻¹)		PED ^e		22	$V_{33} + 13V_{34}$	$44 \pm 38V_{55}$ $124 \pm 97V \pm 21V_{}$	44 T 03755 T 21766 T 31777	$\frac{1}{55} + 69V_{66} + 10V_{77} - 10V_{67}$	$_{77}$ + 11 V_{67}	66	$10,10 + 14 V_{11,11}$	$10,10 + 76V_{12,12}$	$V_{12,12} + 23 V_{14,14} + 22 V_{15,15} - 43 V_{12,14}$	$-31V_{12,15} - 18V_{14,15} -$	13.13 T 1.0 V 14.14 T ±2 V 16.16 T 0.0 V 13.16	13,13 T OF V 14,14 T 10 V 13,16 Visite — 20 Viaite	$\frac{1}{12,12} + 100V_{H,H} + 25V_{15,15} + 80V_{16,16}$	$-\frac{32}{N_{12,H}} - \frac{12}{12} V_{12,15} - \frac{40}{14,15} - \frac{11}{13} V_{21,25} - \frac{13}{12} V_{21,25} - \frac{13}{12$		able 1X. " Frequency not observed.
NCCH	ſ	7 00 L	8.86	1 104	.1 64V	.6 17V	6 103	7 16 1	2 09 X	100 0.	00	5 151		.8 10 <i>V</i>		1 30 1	.0 14 V -	0 19 <i>1</i>	. ; ;	luded in linates <i>kl</i>		NCCH ₃	ſ	Į	.2 99 V	2 867	104	770 9. 716 c	4 17 · 0 ·	.6 12 7	.3 85 V	.1 96 V	84 V	.8 17V	.8 139	160 1	102 0	5 114	181	1 06	3 E	r m 2 pi
₽ Cl ₃ B.)	CCD3	cd 4 0	.8 -0	9.	.6 . –1	0 -1	6 <u></u> – 0	- 4- - 4-			- 7 - 7	1		.8 2		-1 -	.4 –1	33	2	r not inc ry coord		F Br ₃ B	ccb	⊲ po	.6	4 -2	€. 0	ы. 9 9 9	0 7.	.8 -1	4 -1	.1	.4	.8 -0	.7 -0	ч и		4 - 4				otes <i>v</i> an
IETIES 0	Cl310B·N	1 ^b 9109	0 ^b 2372	7 ^b 1105	5° 933	4° 712	36 411	00 287	5 9950	1001	5 841	1 770		6 427		252	4 21/	27 77		requency symmet		IETIES O	Br310B · N	Cale	8 ^b 2099	2° 2364	5" 1104	57 938 Eb 609	JEO - 1977	2 ^b 284	1 ^b 187	2 2243	992	0 838	9 678	617 0	014 048	0177 144 0177	1 51		I. ata	ee footne
pic Var		9110	2372.	1105.	932.	710.	400	203	9959		845	770		430.		256.1	.012	62		I). ^b F1 V _{ki} with		PIC VARI		Obsd	2106.	2362.	1104.	943. 609	.060	283.	186.	2244.		838.	677.	106	004	142			1 400	ň
e Isoto:	H3	1 3	-0.4	0.5	4.1	-0.8	0.3	0.1	-1 4 1	0.0	9.0 -0.9			-4.4	:	-2.7	-0.2	-2.5) 1	- <i>»</i> (calco lentify		E ISOTOI	CH2	Δ	2.5	-2.9	0.1 ,	-0.3	1.0	-1.6	-1.7	-2.5	0.0	5.1	2.2	с о		-0.3	; ;		halan'	v(calcu
FOR FIV	³¹⁰ B·NCC	2020 0	2370.3	1356.5	1016.6	735.6	413 4	306.6	3004 8	1402 6	1097 8	770.8		451.1		263.8	719.1	81 4		(obsd) – scripts ic		FOR FIV	310B · NCC	Calcd	2915.8	2361.9	1351.4	710.9	7.611	291.5	189.3	2992.6	1391.3	1026.7	678.8	6 VGV	0. 796 7. 796	144 4	54.1		1	obsd) –
RENCES	G	9031 9	2369.9°	1357.0	1018.0	734.8	413 7	306 7	3003 4	1409 A	0.6011	1 622	1	446.1		261.1	218.9	78 Q		$\Delta = \nu$ The subs	a	RENCES 1	BI	Obsd	2918.3	2359.0°	1351.5	1017.5 790.5	0.021	289.8	187.6	2990.1	1391.3	1031.8	681.0	0.964	0.02£	144 1	<i>q</i>		/ •	$\Delta = \nu$
arte IX ⁶ d'IFFE	I	v 5 2 2	2.4	0.0	-2.3	-4.6	о U	1.7	-0-1		, e	0.1		-2.4	1	8 0 - 0 8	-1.2			nement. lecule.	Table y	DIFFE	[3	δ	2.9	-1.0	-1.3	6.2-	F. 7	-1.7	-0.8	-1.0	-0.9	-8.8	:	н ц	4.6	6 0			4	ement.
TA NCIES AN	B· ISNCCE	Calcd 20:20 8	2336.5	1356.5	1005.8	735.3	413.9	305.0	3004 8	1402 F	1097 B	770.7		443.5		261.5	218.9	81.9	1	the refi		ICIES ANI	B-NCCH	Caled	2915.8	2328.2	1351.3	6.2101 718 0	6.011	290.2	188.8	2992.6	1391.3	1026.5	678.7	1 201	470.4 969.3	144.4	54.0			the rehn
Freour	Cl310	Ubsd 0.06 3	338.9°	356.5	003.5	730.7	114 1	306.7	0004 1	1.100	0.05	771 7		441.1		260.7	7.7.12			es used in ormal isot ted.		Frequer	Br3	Obsd	918.3	327.2°	350.0	009.6	0.017	288.5	188.0	391.6	390.4	017.7	р	6 197	0.12T	145.3	P		ai barra	s used m
MENTAL	ĺ	010	-1.2	0.7	$0.6 \\ 1$	2.0	-93	0.4-	5 5 7 7 7 7 7	ם 	3 7 1	- -	•	3.5	1	1.5	0.0	0 6		equencie or the no are omitt		MENTAL		Þ	4.2	-1.6	3.2	0.2 191	1.21	1.3	-1.5	0.6_{-2}	:	-1.4 1	1.8	- 12	1.0	-0-1				cquencie
a Funda	B.NCCD3	Calcd 9100 5	2372.5	1104.4	925.0	689.2	411 8	207.4	7 0360	1001 4	841.9	743 8		427.6		252.1	0.012	29.92	1	n ⁻¹ , for fr ribution f agnitude :		d Funda	1B-NCCD	Calcd	2099.6	2364.1	1102.9	930.1 671 4	111.4	284.5	186.8	2243.1	992.4	838.8	650.3	419 K	6 876	144.1	51.2		1 £ f.	a , 101 11
ALCULATI	Cl3 ¹¹	0100 6	2371.3	1105.1	925.6	691.2	400.5	992.5	0.6200	00	844 0	749.4		431.1	0	253.6	210.5	77 8		ass, 3.1 cr lergy dist 10% in m		ALCULATE	Bra1	Obsd	2103.8	2362.5	1.0011	930.3 602 5	000.0	283.2	185.3	2243.7	ъ.	837.4	652.1	100 1	1001 1 951 9	144.0	<i>q</i>		A 1	ass, 4.1 cn
d and C		4 -	-1.0	-0.2	-0.2	3.0	1 3	, 	0.0		-41	-16		-3.4		-2.6	1.2			⁻¹ ; E cl ential er ss than		AND C	ĺ	Δ	2.4	0.4	-0.2	3.4	11.11	-1.2	-1.4	-2.1	0.9	5.1	2.5	с 2	0 C 0 C	0.6			-1. 0.2	ਹ ਸ ਸ
OBSERVE	B-NCCH	Calcd 9090 Q	2370.0	1356.5	1010.4	709.4	413.9	306.2	3004 8	0.F000	1097.8	743 9		450.9		263.7	277.2	81.2		ss, 1.5 cm ₂₄ . ^d Pot d values le		OBSERVEI	B-NCCH3	Calcd	2915.8	2361.6	1301.4	605 9	7.000	291.1	188.7	2992.6	1391.3	1026.7	650.3	0 121 0	2.101	144.2	54.0		- 0.0 min	ss, 2.2 cm
	Clar	9031 4	2369.0°	1356.3	1010.2	712.4	414.5	309.5	3003 8	14026	1093 7	749.3		447.5		261.1	0.912			1: A_1 clas vith $\nu_3 + \nu_3$		Ū	Br311	Obsd	2918.2	2362.0°	1351.2	7.6101	0.001	289.9	187.3	2990.5	1392.2	1031.8	652.8	6 867	0.024	144.8	:		A aloc	1: AI CIAN
		w.(A. CH. str)	$p_2(\Lambda_1, C \equiv N \text{ str})$	$\nu_3(A_1, CH_3 def)$	$p_4(\Lambda_1, C-C \text{ str})$	$p_5(\Lambda_1, B - N \text{ str})$	""(A. RC1, etr)	$m(\Lambda_i, BCl, def)$	True (F. CH. etr.)	The CH Act	$T_{\text{III}}(\mathbf{F}, \mathbf{CH}, \text{true})$	wo(F BCl, str)		$\nu_{13}(E, NCC def)$		$\nu_{14}(E, BCl_3 rock)$	P15(E, BU3 def)	we(F_BNC def)		^a Average deviation for Fermi resonance v are expressed as perce					$\nu_1(A_1, CH_3 str)$	$\nu_2(A_1, C \equiv N \text{ str})$	$\nu_3(A_1, CH_3 del)$	$p_4(A_1, C-C SU)$		$\nu_6(A_1, BBr_3 str)$	$\nu_7(A_1, BBr_3 def)$	$\nu_9(E, CH_3 str)$	$\nu_{10}(E, CH_3 def)$	$\nu_{11}(E, CH_3 rock)$	$\nu_{12}(E, BBr_3 str)$	(F NCC Jef)	ni(R BBr. rock)	Pre(E. BBra def)	PI6(E, BNC def)		4. Average deviation	" AVCTAGE DEVIATION

^{*a*} Average deviation: A₁ class, 2.2 cm⁻¹; E class, 4.1 cm⁻¹, for frequencies used in the refinement. ^{*e*} Potential energy distribution; see footnote d of Table IX.

mode resulted in unrealistic potential energy distributions and poor agreement between observed and calculated frequencies. Also, values for the primary force constants involving the linear angle deformation modes for this force field were unsatisfactory. The Jacobian matrix showed that the low-frequency mode in the E block is affected only by the BNC primary and interaction force constants, and these constants must be changed drastically in order to change the frequency of this mode. Therefore, the original assignment for v_{16} is preferred.

For the BBr₃ adduct a refinement was made using the $ca. 125 \text{-cm}^{-1}$ assignment for the BBr₃ rock mode, ν_{14} . The lowest value which could be obtained for this mode without introducing large errors in the other frequencies was about 190 cm⁻¹. The PED for this refinement showed an abnormal dependence on interaction constants, and the primary BBr₃ rock force constant was too low. Therefore, the original $ca. 250 \text{-cm}^{-1}$ assignment for ν_{14} is preferred. The final symmetry force constants for the BCl₃ and BBr₃ adducts are presented in Tables VII and VIII, and the final fit between observed and calculated frequencies is given in Tables IX and X.

Discussion

Factor Group Coupling.—While it is peripheral to the main theme of this paper, some interesting spectral details have been observed which may be related to intermolecular coupling and low molecular site symmetry in the solid. For example, the symmetric CH₃ deformation is observed as a sharp doublet for all adducts in the infrared spectrum. However, in the spectrum of 3% F₃¹⁰B·NCCH₃ in a host lattice of F₃¹⁰B·NCCD₃ this mode was observed as a single peak.⁶ Apparently, the splitting is destroyed when there is only one hydrogen-containing molecule in the unit cell. This is an example of an A₁ mode which is split by factor group coupling. There are many more examples of E symmetry fundamentals which are split in one or both of the techniques.

Factor group coupling is also responsible for the lack of correspondence between the Raman and infrared positions for many of the fundamentals. The correspondence for the B-N stretch is poor for all the adducts, and for the BCl₃ and BBr₃ adducts the difference between the two techniques is $ca. 25 \text{ cm}^{-1}$. The same behavior is shown by the symmetric BF_3 stretch and the antisymmetric BCl₃ and BBr₃ stretch modes. For both CH₃ stretching vibrations the correspondence between the infrared and Raman spectra is good for the BF₃ and BCl₃ adducts, but these two techniques give significantly different values for the BBr₃ adduct. Apparently, factor group coupling is more important for the BBr₃ adduct than for the lighter members of the series. The other fundamentals also show that factor group coupling increases going from the BF₃ through the BBr₃ adducts.

One possible origin of the factor group splitting is dipole-dipole interaction in the unit cell which would explain the observed increase in mutual exclusion for the heavier members of the series in terms of the known increase in the dipole moment of the adducts. The packing diagram for the BCl₃ adduct⁵ shows that two dipole-dipole interactions are important in the lattice: interaction between molecules in the same plane and interaction between molecules in neighboring planes at y = 1/4, 3/4. The latter interaction involves molecules related by a center of symmetry, and in view of the increase in mutual exclusion it is likely that this interaction is becoming more important for the heavier members of the series.

Trends in the Vibrational Frequencies and Force Constants.—Many of the acetonitrile vibrations exhibit large shifts upon adduct formation as well as monotonic shifts in going from the BF_3 through the BBr_3 adducts. The boron halide frequencies are affected considerably by adduct formation; however, simple interpretations of the changes in boron halide frequencies are unreliable because of the extensive mixing of symmetry coordinates in the normal modes.

Following the general trend found for nitriles, the C=N stretching frequency increases $ca. 100 \text{ cm}^{-1}$ upon adduct formation. The C=N valence force constant (Table XI) increases significantly upon adduct forma-

TABLE XI							
	Valence Force Constants for $X_3B \cdot NCCH_3$						
	NCCH3	F8B·NCCH3	$Cl_3B\cdot NCCH_3$	Br ₃ B·NCCH ₃			
fona	17.4	18.8	18.7	18.6			
$f_{\rm CC}$	5.3	5.3	5.1	5.1			
$f_{\mathtt{BN}}$		2.5	3.4	3.5			
fncc	0.38	0.45	0.41	0.36			
fbnc		0.20	0.25	0.25			
^a Cons	stants $f_{\rm CN}$, $f_{\rm CC}$,	and f_{BN} are	e in units of	mdyn/Å while			

^a Constants f_{CN} , f_{CC} , and f_{BN} are in units of midyit/A with f_{NCC} and f_{BNC} are in units of mdyn Å/(radian)².

tion confirming the increase in the C=N bond strength indicated by the structure data.⁶ The increase in the C=N frequency upon coordination has been attributed to increased C=N σ -bond strength in the adduct.²¹

Both ν_{CN} and the C=N force constant decrease in going from the BF₃ through the BBr₃ adducts. However, the changes in ν_{CN} are small and the variation in the force constant is not significant since the errors are large. The latter result shows that simple correlations of ν_{CN} are of little value in understanding the bonding in compounds such as these.

Another acetonitrile vibration exhibiting a large shift upon adduct formation is the C-C stretch which is observed to increase ca. 60 cm⁻¹ in the boron fluoride adduct and ca. 100 cm⁻¹ in the boron bromide adduct. Whether this increase is partly due to an increase in C-C bond strength cannot be answered at present because both the bond shortening and change in force constant are within the estimated standard deviations. The PED's for the adducts given in Tables IX and X show that the mode assigned to C-C stretch has a large contribution from the B-N stretching force constant and, therefore, the increase in ν_{CC} is partially due to kinematic coupling with B-N stretch. Other changes in the acetonitrile frequencies upon coordination are not large.

For the remaining vibrations the most striking and important change is found for the B-N stretching frequency which increases in the heavier members of the series. The trend is not monotonic since this mode is $ca. 7 \text{ cm}^{-1}$ lower in the BBr₃ adduct than in the BCl₃ adduct. The PED shows that more than one force constant contributes to this normal mode, so a simple

 ⁽²¹⁾ K. F. Purcell and R. S. Drago, J. Amer. Chem. Soc., 88, 919 (1966);
 K. F. Purcell, *ibid.*, 89, 6139 (1967); 90, 1094 (1968); see, however, K. Kuwai and I. Kanesaka, Spectrochim. Acta, Sect. A, 25, 1265 (1969).

interpretation of frequencies may be misleading, and it is necessary to inspect the B-N force constants for information on the bonding in these molecules. The B-N stretching force constant is ca. 0.9 mdyn/Å higher for the BCl₃ adduct than for the BF₃ adduct. While the standard deviations of the two measurements are relatively high, the difference in the force constants is greater than twice the estimated error. Also, as described previously, the constraints used in the normal coordinate do not seriously bias the B-N force constant. Therefore, this difference is considered to be significant, and it is concluded that the B-N bond is stronger in the BCl₃ adduct than in the BF₃ adduct. The B-N force constant for the BBr₃ adduct is slightly smaller than that of the BCl₃ adduct but, in this case, the difference is not significant. Thus, the B-N bond is approximately the same for the boron chloride and boron bromide adducts.

There are indications that in the absence of specific effects, such as steric crowding, the pattern of stronger donor-BCl₃ than donor-BF₃ bond may be general. For example, while they are not conclusive, a variety of older spectroscopic data are consistent with this order of donor-B bond strength.⁵ Of particular significance is the recent esr study of nitroxide-boron halide adducts which clearly demonstrates that BCl₃ is a stronger electron acceptor than BF₃.²²

The BX_3 symmetric and antisymmetric stretching frequencies show the expected decrease in going from the BF_3 through the BBr_3 adducts, and the separation of these two modes increases in the heavier members of the series. Force constants for free BX_3 are compared with those of the adducts in Table XII; the usual de-

	Symmetry VA BX3	Table XII Lence Force Stretch (md	Constant yn/Å)	S FOR	
	BX3ª				
	Α	E	Α	E	
F	8.82	7.82	6.49	3.85	
Cl	4.63	4.19	3.32	3.24	
Br	3.64	2.80	2,94	2.45	
T 117	T	A 1	7 (1)	707 10 107	

^a I. W. Levin and S. Abromowitz, J. Chem. Phys., 43, 4213 (1965).

crease in M-X force constants upon adduct formation is observed.⁷ In the present case the decrease may in part be attributed to the decrease in $BX_3 \pi$ bonding upon adduct formation. The largest change is found for the BF_3 adduct which is reasonable since there is more π bonding in BF_3 than in the heavier acids (see below). However, the relative changes are approximate because constraints used in the normal-coordinate treatment affect these particular force constants.

Bonding in $X_3B \cdot NCCH_3$.—The most important aspect of this study is the information it yields concerning the variation in B–N interaction with a change in halogen atom bonded to boron. Any thermodynamic assessment of the B–N bond energy must rely on a variety of uncertain assumptions. Experience has shown that two of the most reliable types of extrathermodynamic information which may be used to infer *relative* bond energies are bond distances and force constants. In previous work on the B–N bond length, it was found that this distance is 0.068 Å shorter

(22) T. B. Eames and B. M. Hoffman, J. Amer. Chem. Soc., in press.

for $Cl_{a}B \cdot NCCH_{a}$ than for $F_{a}B \cdot NCCH_{a}$, and the difference was concluded to be experimentally significant.⁵ Similarly, the present work demonstrates a significantly higher (0.9 mdyn/Å) B–N force constant for $Cl_{a}B \cdot NCCH_{a}$ than for $F_{a}B \cdot NCCH_{a}$. This force constant difference corresponds to about 18 kcal/mol bend energy difference,²³ which is similar to the 8–16 kcal/mol range previously estimated from bond lengths.⁵ While the exact values of these bond energy differences are not to be taken seriously, it is significant that two independent estimates indicate that the difference in B–N bond strength between $F_{a}B \cdot NCCH_{a}$ and $Cl_{a}B \cdot NCCH_{a}$ is of the same magnitude as the difference in the enthalpies of complex formation, 11.8 kcal/mol.²⁴

To explore the origin of the stronger B–N bond for the BCl₃ adduct CNDO/2 molecular orbital calculations were performed on BF₃ and BCl₃ with varying degrees of angular distortion.²⁵ The BCl₃ calculations were carried out with 3s3p and also with 3s3p3d basis orbitals on Cl. The former results appear to be somewhat better;²⁶ however, they are subject to greater uncertainty than the BF₃ results because CNDO/2 parameters are less reliable for the third period than for lighter elements.

The calculated lowest unoccupied virtual orbital energies, E(LUMO), and total energies, E(total), are presented in Figure 5, which indicates that BCl₃ has a significantly higher electron affinity—lower E(LUMO) than BF₃.²⁷ Since the LUMO is primarily localized on boron, the energy of this virtual orbital should give a reasonable indication of the acceptor strength of the boron halide. On this basis it appears that BCl₃ is a stronger electron pair acceptor than BF₃. This difference originates from the smaller degree of B_{pz}-X_{pz} interaction for the chloride.

It is clear that upon forming a stable complex the reorganization energy of the BX_3 group must be more than compensated by the donor-acceptor bond energy. These factors are illustrated in Figure 5, which presents

(23) G. W. Chantry, A. Finch, P. N. Gates, and D. Steele, J. Chem. Soc. A, 896 (1966).

(24) A. W. Laubengayer and D. S. Sears, J. Amer. Chem. Soc., 67, 164 (1945).

(25) J. A. Pople and D. L. Beveridge, "Approximate Molecular Orbital Theory," McGraw-Hill, New York, N. Y., 1970. The standard parameters were employed. Boron-halogen distances were held fixed at the experimentally determined bond lengths R(BF) = 1.31 and R(BCI) = 1.75 Å. Program No. 142, QCPE, Indiana University, Bloomington, Ind.

(26) The out-of-plane bending force constant is calculated to be 0.45 mdyn/Å with the sp basis and 0.17 mdyn/Å with an spd basis set for BCl₃. The observed value is 0.42 mdyn/Å. G. Herzberg, "Infrared and Raman Spectra," Van Nostrand, Princeton, N. J., 1945, p 178. From this comparison the sp basis set is preferred. Another check on the calculation is provided by the computed reorganization energy for BF₈, 38 kcal/mol, which compares favorab'y with 34 kcal/mol from an *ab initio* calculation of D. R. Armstrong and P. G. Perkins, *Chem. Commun.*, 856 (1969). For BCl₈ the calculated reorganization energy is 38 kcal/mol when an sp basis set is used and 11 kcal/mol with an spd basis set. While cross checks between various molecular orbital methods may be provided by comparisons of calculated reorganization energies, the estimation of this quantity is uncertain and the definition is somewhat arbi rary. Therefore calculated reorganization BCl₈.

(27) The difference between E(LUMO) values for planar BCl₈ and BF₈ is 2.3 eV when an sp basis is used for Cl, and it is 3.3 eV when an spd basis is used. For comparison, the top three filled molecular orbitals average about 4.0 eV higher than the three lowest ionization potentials of BF₈: R. J. Boyd and D. C. Frost, *Chem. Phys. Lett.*, **1**, 649 (1968). The three highest filled molecular orbitals of BCl₈ (using either an sp or spd basis set) average about 2.4 eV higher than the corresponding ionization potentials. Thus the highest filled orbitals are calculated to be 1.6 eV too low for BCl₈ relative to BF₈. This error is substantially less than the differences in E(LUMO) between BF₈ and BCl₈, but it can only be concluded that the CNDO/2 suggests that BCl₈ ha; a higher electron affinity than BF₈ because errors in the virtual orbitals are probably higher than for the filled orbitals. the reorganization energy—change in E(total)—and the acceptor orbital energy—E(LUMO)—for BF₃ and BCl₃ with varying degrees of angular distortion. A striking feature of these results is that the BCl₃ curves are similar to those of BF₃ but shifted to lower energy. When d orbitals are included in the calculation for BCl₃ the total rise in E(total) and drop in E(LUMO) are about one-third of those given in Figure 5 and the curves are shifted to lower energy. While the CNDO/2 calculations are ambiguous concerning reorganization energies, they do indicate that BCl₃ should be a stronger electron acceptor than BF₃ for any degree of reorganization.

In summary, B–N bond length and force constant data indicate that relative B–N bond strengths are of the same order as relative heats of complex formation for F_3B ·NCCN₃ and Cl_3B ·NCCH₃. This result is contrary to previous estimates of reorganization energies which indicate that B–N bond strengths are not a determining factor in complex stability and which lead one to the conclusion that donor–acceptor bond energies are actually the reverse of stabilities.⁴ We must look to other effects to explain all of the available information on B–N bond lengths, force constants, and heats of complex formation. One alternate explanation of the data, which appears to merit serious consideration, is

the interplay between BX₃ reorganization and acceptor strength, such that the most easily reorganized acid (presumably BCl₃) will be distorted to a greater extent and therefore have a greater electron affinity than its less pliable counterpart.⁵ Another possible origin of the increased B-N bond strength for the BCl₃ adduct may be the greater electron affinity for BCl₃ than BF₃ due to less $p_{\pi}-p_{\pi}$ bonding between Cl and B.²⁸ While the acidity difference between these boron halides is chemically important, it is small enough that a definitive illustration of its origins is beyond the capabilities of current theory, but there is an indication from CNDO calculations that the greater electron affinity of BCl₃ may be a significant factor. It is therefore probable that both factors mentioned above operate in unison to yield a higher acidity for BCl₃ than for BF₃.

Acknowledgment.—We are grateful to the NSF for the support of this work through Grant GP 6676 and to the Advanced Research Projects Agency for support through the Northwestern Materials Research Center. We thank Professor R. C. Taylor for a copy of P. D. H. Clippard's thesis and for helpful correspondence.

(28) While it probably is not decisive, one contribution to the stability trend is an increase in lattice energy for the heavier complexes. The present observation of increasing intermolecular coupling with increasing halide atomic number affords experimental evidence for the expected trend in intermolecular interactions arising from London and polar forces.

Contribution from the Department of Chemistry, Purdue University, West Lafavette, Indiana 47907

Trends in $(CH_3)_2$ YAuP $(C_6H_5)_3$ Compounds $(Y^- = Cl^-, CH_3^-, \sigma - C_5H_5^-)$. Proton Magnetic Resonance and Vibrational Spectra¹

BY STANLEY W. KRAUHS,² GIAN CARLO STOCCO,³ and R. STUART TOBIAS*

Received September 2, 1970

The new compounds R_2AuXPR_3 obtained by bridge cleavage of dimethylgold(III) halides can be alkylated cleanly. This method has been used to prepare the known compounds $(CH_3)_3AuP(C_6H_5)_3$ and $(CH_3)_3AuP(C_2H_5)_3$ and the new compound $(\sigma-C_5H_5)(CH_3)_2AuP(C_6H_5)_3$. Complete laser Raman, infrared, and pmr spectra are given for these compounds as well as for $(CH_3)_2AuCP(C_6H_5)_3$ permitting comparisons in the sequence of compounds $(CH_3)_2AuP(C_6H_5)_3$ $(Y^- = Cl^-, CH_3^-, \sigma-C_5H_5^-)$. Raman spectra establish that the cyclopentadienyl group in $(C_5H_5)(CH_3)_2AuP(C_6H_5)_3$ is σ bonded, and the pmr spectra establish that it is trans to a methyl group and stereochemically nonrigid as would be expected by analogy with bis-(cyclopentadienyl)mercury. Unlike the related $(\sigma-C_5H_5)(CH_3)_2Tl$, there is no intermolecular exchange of the cyclopentadienyl ligands at 40°. Replacement of Cl^- by CH_3^- leads to a weakening of the Au-C bonds as indicated by a decrease in the frequency of the very intense Au-C stretching bands. Substitution of $\sigma-C_5H_5^-$ for CH_3^- causes a maximum shift of only 4 cm⁻¹ in these frequencies. The trialkyl derivatives show a large trans influence for the alkyl groups leading to a weakening of the mutually trans Au-C bonds.

Introduction

While dialkylgold(III) compounds are among the most stable of the σ -bonded transition metal alkyls, the trialkyl derivatives are considerably less so. Gilman and Woods⁴ were able to isolate trimethylgold as the adducts with ethylenediamine, 2-aminopyridine,

(1) Supported, in part, by Grant GP-23208 from the National Science Foundation. Acknowledgment also is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society for partial support of this research. Presented, in part, at the XIIIth International Conference on Coordination Chemistry, Cracow-Zakopane, Poland, Sept 1970.

(2) NSF undergraduate participant under Grant GY-5845.

(3) Fulbright Fellow from the Institute of General and Inorganic Chemistry, University of Palermo, Palermo, Italy.

(4) H. Gilman and L. A. Woods, J. Amer. Chem. Soc., 70, 550 (1948).

and benzylamine. These compounds were moderately stable, particularly the ethylenediamine complex, but even it was very light sensitive and detonated upon heating.

Coates and Parkin⁵ isolated stable adducts of trimethylgold with trimethyl- and triphenylphosphine either by displacing ethylenediamine from $[(CH_3)_3Au]_2en$ with the phosphine in solution at -20° or by adding the phosphine directly to an ether solution of trimethylgold at -65° . A review of organogold chemistry has appeared recently.⁶

(6) B. Armer and H. Schmidbaur, Angew. Chem., Int. Ed. Engl., 9, 101 (1970).

⁽⁵⁾ G. E. Coates and C. Parkin, J. Chem. Soc., 421 (1963).